Trina Solar achieves 24.13% conversion efficiency for IBC solar cell

Facebook
Twitter
LinkedIn
Reddit
Email
The champion cell had an open-circuit voltage Voc of 702.7mV, a short-circuit current density Jsc of 42.1 mA/cm2 and a fill factor FF of 81.47%. The IBC solar cell has a total measured area of 243.3cm2 and was measured without any aperture, according to the company. Image: Trina Solar

‘Silicon Module Super League’ (SMSL) member Trina Solar has reported a verified N-type monocrystalline Interdigitated Back Contact (IBC) solar cell with a conversion efficiency of 24.13%. Japan Electrical Safety & Environment Technology Laboratories (JET) verified the results.

Trina Solar noted that the record-breaking IBC cell was fabricated at its State Key Laboratory (SKL) of PV Science and Technology (PVST), on a large-sized phosphorous-doped Cz Silicon substrate (156×156 mm) with a low-cost industrial IBC process, featuring conventional tube doping technologies and screen-printed metallization. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The champion cell had an open-circuit voltage Voc of 702.7mV, a short-circuit current density Jsc of 42.1 mA/cm2 and a fill factor FF of 81.47%. The IBC solar cell has a total measured area of 243.3cm2 and was measured without any aperture, according to the company.

The 156×156 mm2 solar cell reached a total-area efficiency of 24.13% as independently measured by the Japan Electrical Safety & Environment Technology Laboratories (JET).

Dr. Pierre Verlinden, Vice President and Chief Scientist of Trina Solar said: “Over the last few years, our R&D team has managed to continuously improve the efficiency of our n-type IBC solar cells, pushing the limits and surpassing our previous records, and approaching very closely to the performance of our best small-area laboratory cell developed in collaboration with ANU three years ago.” 

Dr. Verlinden also noted that Trina Solar’s goal was to move the IBC cell from lab to fab as quickly as possible. Currently, Trina Solar has yet to announce a commercial product using IBC solar cells. 

Read Next

April 15, 2025
Korean chemical firm OCI Holdings has reportedly paused public listing plans for its Malaysian polysilicon business amid global stock market uncertainty.
April 10, 2025
Germany's proposal to allow international carbon credits to reach EU decarbonisation targets “risks undermining the target’s credibility”, according to think tank Agora.
Premium
April 4, 2025
President Trump's tariffs could simultaneously hamper US renewables manufacturing and make imported products more expensive, PV Tech heard.
April 3, 2025
US President Donald Trump has announced sweeping global tariffs on imports to the US, which have heavily impacted major solar PV manufacturing regions.
Premium
April 2, 2025
GCL Technology has removed itself from the Xinjiang region and abandoned the Siemens method of polysilicon production.
April 1, 2025
PERC solar PV technology is “all but obsolete” in Europe, as the flow of cheap N-type products coming from China is unlikely to abate.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA