Perovskite cells’ reverse bias potential threatens technology’s commercial viability, say researchers

Facebook
Twitter
LinkedIn
Reddit
Email
The researchers said reverse bias could be caused by shading or debris or detritus on the module surface. Image: UNSW Sydney

Perovskite solar cells are susceptible to severe reverse bias challenges beyond those of traditional silicon cells, which may represent further impediments to the technology’s commercialisation, according to new research. 

A recent paper in the journal Joule by researchers Dongchen Lan and Martin Green from UNSW Sydney found that perovskite cells in the module that become shaded can be driven into reverse-bias operation by cells with higher current output.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

This, they said, demonstrated how perovskite cells “can face additional challenges beyond those of silicon cells”, which could hamper their potential commercialisation.

Reverse bias is where the electrons generated in the solar cell flow in the wrong direction, from the anode to the cathode, resulting in a significantly reduced current and output.

The scientists pointed to a lack of research on the subject of reverse bias challenges facing perovskite solar cells. “Improved understanding and resolution of these reverse-bias effect are necessary for perovskites to become a commercial reality,” they said.

Experience shows that the most demanding durability issues for fielded modules arise when cells become reverse biased, said Lan and Green.

Following their findings, the researchers proposed a number of strategies to mitigate the reverse bias they discovered. These include “subdividing a long-thin cell module into series/parallel connection of smaller cells”, which thin film manufacturer First Solar has already done for its modules after it was shown they were susceptible to transient shadows, the researchers said.

Additionally, another strategy involves providing bypass protection across each perovskite cell, rather than bypass diode for every 20 – 24 cells as is the case with most silicon modules, which Lan and Green said would be possible at lower cost.

It has been a busy year for perovskite research. In the last two months alone researchers have said perovskite-on-silicon PV modules are more environmentally advantageous than conventional silicon heterojunction (HJT) modules over a 25-year lifetime, while others have claimed two world records by achieving an efficiency of over 30% for perovskite-on-silicon-tandem solar cells.

And in June the US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) revealed that a tin-lead perovskite cell can overcome problems with stability and improve efficiency, with their latest experiment yielding a 25.5% conversion efficiency.

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.
2 December 2025
Málaga, Spain
Understanding PV module supply to the European market in 2026. PV ModuleTech Europe 2025 is a two-day conference that tackles these challenges directly, with an agenda that addresses all aspects of module supplier selection; product availability, technology offerings, traceability of supply-chain, factory auditing, module testing and reliability, and company bankability.
10 March 2026
Frankfurt, Germany
The conference will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing out to 2030 and beyond.

Read Next

April 14, 2025
LONGi has launched the latest version of its Hi-MO 9 module, which now boasts a conversion efficiency of 24.8% and an output of 670W.
April 10, 2025
British perovskite solar company Oxford PV and Chinese solar manufacturer Trinasolar have entered into a patent licensing agreement for perovskite-based PV technologies.
April 9, 2025
Swedish thin-film solar cell company Midsummer has been awarded €2.8 million to research tandem perovskite cell technology.
Premium
April 2, 2025
PV Talk: “Our best chance of establishing a viable solar industry is in partnership with China,” Brett Hallam tells PV Tech Premium.
March 31, 2025
Leading Chinese module manufacturer Trinasolar has developed an 808W solar module that uses perovskite/silicon tandem solar cells.
March 28, 2025
Toyo Solar plans to double its annual solar PV cell production capacity in Ethiopia, East Africa.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA