Plansee and TU Bergakademie Freiberg identify molybdenum’s key conductivity factors

Facebook
Twitter
LinkedIn
Reddit
Email

Molybdenum, commonly used as the back-contact material in CIGS solar cells, has been the subject of an in-depth study by sputtering target manufacturer Plansee, working in collaboration with TU Bergakademie Freiberg. Plansee’s results, presented at the ICMCTF Conference, identified the process errors and defect types present in molybdenum thin films that can have a detrimental effect on electrical conductivity.

Impurities and incorrect process temperatures during sputtering were said to be the main influences on electrical conductivity of the material. Impurities such as iron, nickel and chromium can, at high enough levels, reduce the electrical conductivity of the molybdenum thin film by more than 40%. Counteracting this effect is possible by ensuring the high purity of sputtering targets in the CIGS manufacturing process.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Dislocations, or defects in the molybdenum crystal lattice, are said to be another major influence on electrical conductivity of molybdenum films. These dislocations, although necessary to enable the workability of the metals, can reduce the electrical conductivity by up to 14%. Plansee and TU Bergakademie Freiberg’s findings in this regard show that this effect can be halved by employing a process temperature of 150°C instead of room temperature.

Use of this higher temperature can also help reduce the effect of unavoidable interstitial impurities that collect on the lattice – usually consisting of nitrogen, oxygen and argon – which can reduce the electrical conductivity of the films by up to 12%. At 150°C, the tiny atoms are sufficiently energized to break free of the molybdenum lattice.

The testing of the molybdenum material was conducted by depositing the thin films on soda lime glass, thereby allowing the extraction of a basic characterization of the layers, measurement of the films’ electrical resistance and analysis of the films’ microstructure using Transmission Electron Microscopy (TEM) and X-ray diffraction (GAXRD). The group was headed by Professor David Rafaja of TU Bergakademie Freiberg’s Institute for Materials Science and Harald Köstenbauer, a developer of thin-film materials at Plansee.

Read Next

Premium
April 17, 2025
As Europe readjusts to a new geopolitical uncertainty, PV Tech asks what impact the continent's solar industry might feel.
April 17, 2025
ES Foundry has signed a 150MW cell supply deal with what it calls a “leading national community solar developer” in the US.
April 17, 2025
Catalyze has secured US$85 million in tax equity investment to support the construction of 75MW of distributed solar projects in the US.
April 16, 2025
Chinese, Indian and American companies have strengthened their positions atop the solar industry’s EPC rankings, according to Wiki-Solar.
April 16, 2025
US residential solar company Complete Solaria will change its name to SunPower, resurrecting the name of one of the US' longest-running solar companies which folded last year.
Premium
April 16, 2025
PV Talk: “We need more grid, but there are a lot of challenges and hurdles in expanding the grid,” José Visquert tells PV Tech Premium.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA