New Product: Mitsubishi Electric boosts multicrystalline cell efficiency to 18.9%

Facebook
Twitter
LinkedIn
Reddit
Email

 

Mitsubishi Electric Corporation has improved its highest conversion efficiency rate for a 150 x 150 millimeter practical-size multicrystalline silicon photovoltaic (PV) cell by 0.3 points from 18.6 percent to achieve a claimed new world record of 18.9%.
 
Problem
 
Production volumes of solar, or PV, systems have been increasing as they have garnered attention as a good source of renewable energy, against the background of increased global environmental awareness. While silicon is an essential component in the wafers used to make PV cells, the supply of silicon has not been able to keep up with demand. This is driving research into the development of thinner wafers that not only use less silicon, but also have improved efficiency and increased electrical output.
 
Solution
 
To increase the photoelectric conversion efficiency rate in PV cells, it is important to absorb and generate electricity efficiently from a wide range of wavelengths in sunlight. Due to the characteristic of crystalline silicon, which has difficulty in absorbing infrared rays, only roughly half of the infrared rays in sunlight can be used to generate electricity, while the other half is usually lost as heat energy after reaching the rear surface of silicon cells. In particular, the thinner the silicon PV cell is, the more difficult it becomes to absorb infrared rays. Mitsubishi Electric has succeeded in improving efficiency in utilizing infrared rays by 26% compared to the company’s previous PV cells, whose development was announced on March 19, 2008. The newly developed PV cell has a rear-surface reflection structure, which reflects infrared rays that reaches its rear surface to allow the cell to absorb more light.
 
Applications
 
Mitsubishi Electric photovoltaic modules are designed for both commercial and domestic applications suitable for grid-connected systems.
 
Platform
 
To increase the photoelectric conversion efficiency rate in PV cells, it is also important to reduce the amount of light reflected from their front surface to take more sunlight into the cells. This newly developed PV cell adopts the same low-reflective honeycomb-textured structure as the one previously developed by Mitsubishi Electric that achieved an 18.6% conversion efficiency rate. The hexagon structure incorporates very small bowl-shaped concaves.  Mitsubishi Electric also aims to increase output of PV systems by combining this technology with its PV inverters, which have a high energy-conversion efficiency rate.
 
Availability
 
April 1, 2010 onwards.
This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Read Next

April 23, 2025
The New South Wales government has said that 3.5GW of solar PV, BESS and wind have been granted the right to connect to the South West REZ.
Premium
April 22, 2025
Solar’s rapid expansion has attracted the attention of those opposed to its ongoing success, writes Becquerel Institute CEO Gaëtan Masson.
April 22, 2025
Japanese cell and module manufacturer Toyo Solar has begun production at its solar cell processing plant in Ethiopia.
April 22, 2025
Solar PV developer Atlas Renewable Energy has secured US$510 million in financing for a solar-plus-storage project in Antofagasta, Chile.
April 22, 2025
The US Department of Commerce has issued anti-dumping and anti-subsidy tariffs on solar cell imports from Southeast Asia.
April 22, 2025
JA Solar has started delivery of 1GW of its DeepBlue 4.0 Pro modules to the 2GW Suji Sandland project in Inner Mongolia, China.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA