RASIRC and Fraunhofer to present research paper on purified steam at IEEE conference

Facebook
Twitter
LinkedIn
Reddit
Email

During IEEE’s 35th PV specialist conference, RASIRC and the Fraunhofer Institute for Solar Energy Systems will present their research on using purified steam in the solar cell fabrication process with their paper, “Purified Steam for Industrial Thermal Oxidation Processes.” The paper compares purified steam with pryolytic team for silicon solar cell fabrication.

“Our research with Fraunhofer on using purified steam in the solar cell fabrication process has generated many positive and cost effective results,” said RASIRC founder and president Jeffrey Spiegelman. “This result reveals that purified steam enables the growth of high quality thermal oxides for the industrial fabrication of thermal oxide-passivated silicon solar cells.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Thermal silicon oxides are known to passivate silicon surfaces and have been used for the fabrication of efficient silicon solar cells. In most cases, the steam used for wet oxidation is produced by pyrolysis of highly purified hydrogen and oxygen gases. A new approach for direct steam delivery is to purify vaporized deionized water, wherein the process decreases costs for expendables, eliminates hydrogen gas from the facility and improves safety because of increased saturation with steam in the process atmosphere results in a higher cell growth rate during oxidation.

The research paper compares the two steam generation technologies, analyzes the physical properties of purified steam grown thermal oxides and implements a direct steam-based oxidation process into an industrial fabrication sequence for rear-surface passivated solar cells. Results have shown that by using industrial equipment for wet chemical cleaning and thermal oxidation, high effective carrier lifetimes of ~400 µs on 1 Ohmcm floatzone wafers for both steam sources were achieved.

Read Next

April 24, 2025
Lee Zhang of Sungrow reveals how the company's new inverter meets the needs of the rapidly evolving solar and storage industries.
April 24, 2025
Floating solar remains constrained by a range of technical and regulatory uncertainties, according to an IEA PVPS report.
April 24, 2025
The US state of New Jersey has launched its third solicitation of the CSI Program, seeking 300MW of solar PV and 160MWh of energy storage.
April 24, 2025
Swiss solar manufacturer Meyer Burger has reduced shifts for around 300 employees at its Thalheim cell manufacturing facility amid supply chain challenges.
April 24, 2025
US material recovery firm OnePlanet has closed two financing deals to aid the development of a solar module recycling facility in Florida.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA
Solar Media Events
July 1, 2025
London, UK