SNEC 2015: centrotherm’s regeneration belt furnace reduces LID impact by up to 80%

April 24, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

centrotherm is launching the ‘c.REG’ conveyor belt furnace for monocrystalline p-type solar cell regeneration, which is claimed to achieve a reduction in light induced degradation (LID) from 6% to 1%, within less than a one minute processing cycle time. The company is showcasing the regeneration technology at SNEC 2015, being held in Shanghai, China.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

After being exposed to light monocrystalline silicon solar cells suffer performance losses due to light induced degradation (LID). In general, this effect, which is ascribed to boron-oxygen (B-O) complex in the wafer bulk, lowers conversion efficiency by up to 6 % in the long term.

Solution

To avoid B-O-defects, centrotherm developed a regeneration process and the corresponding key equipment c.REG that potentially reduces LID to 1% only. Within the regeneration process boron-oxygen defects responsible for light induced degradation (LID) are passivated and transformed into a less active state in order to minimize performance losses. The regeneration process can be implemented directly after fast firing, after sorting or even before module manufacturing and is applicable to both, Al-BSF (Aluminium Back Side Field) and PERC solar cells. Process time ranges between 20 and 45 seconds depending on wafer material and pre-processing.

Applications

Regeneration of Cz-Si solar cells.

Platform

c.REG is a stand-alone regeneration equipment based on the modular design of centrotherm conveyor belt furnaces with a small footprint. The process chamber is designed in a modular concept matching different requirements of wafer material with up to 3 modules possible that is notable for an optimum process sequence, time and calibration. The system comes with integrated heater and belt transfer handling and has a throughput (at 5100 mm/min) of 3600 wafers/hr.

Availability

May 2015 onwards

Read Next

December 12, 2025
A roundup of three solar PV project financing stories from Australia, Texas and California, with updates from Potentia Energy, Origis Energy and Baywa r.e.  
December 12, 2025
A round-up of news coming from Europe, with IPP Encavis acquiring a 265MW solar PV portfolio in Italy, Iberdrola starting construction on 366MW of solar PV in its home country and IPP Sonnedix signing a renewables supply agreement with a subsidiary of Volkswagen in Spain.
December 12, 2025
India’s flagship solar PV manufacturing incentive has driven “robust growth” in the sector since its launch, but hurdles remain to building a complete domestic supply chain.
December 12, 2025
Solar PV companies in the US are not waiting for guidance from the US Departments of the Treasury or Energy to act regarding Foreign Entity of Concern (FEOC), according to a survey conducted by Crux.
December 12, 2025
US solar PV module prices have stabilised at just over US$0.28/W in the three months to November 2025, according to Anza.
December 11, 2025
The Chinese polysilicon industry has emerged with a new "inventory platform" with a RMB30 billion capital aimed at increasing prices.

Upcoming Events

Upcoming Webinars
December 17, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA