Study finds human hair can improve performance of perovskite cells

Facebook
Twitter
LinkedIn
Reddit
Email
Image: QUT.

Scientists in Australia have used human hair clippings from a Brisbane barbershop to create an ‘armour’ that increases the power conversion efficiency of perovskite solar cells.

The researchers from Queensland University of Technology (QUT) used hair to create carbon dots – nanoparticles smaller than around 10 nanometres – which form a wave-like perovskite layer where the perovskite crystals are surrounded by the carbon dots.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

According to lead researcher Professor Hongxia Wang, the process protects perovskite material from moisture or other environmental factors: “It creates a kind of protective layer, a kind of armour.”

Having previously found that nanostructured carbon materials could be used to improve a cell’s performance, Professor Wang’s team’s latest research discovered that perovskite solar cells covered with the carbon dots had a greater stability than perovskite cells without the carbon dots.

Professor Wang said the main challenges in perovskite solar cell production include ensuring the stability of the device so that it is able to operate for 20 years or longer, as well as the development of a manufacturing method that is suitable for large-scale production.

“Currently, all the reported high-performance perovskite solar cells have been made in a controlled environment with extremely low level of moisture and oxygen, with a very small cell area which are practically unfeasible for commercialisation. To make the technology commercially viable, challenges for fabrication of efficient large area, stable, flexible, perovskite solar panels at low cost needs to be overcome,” she added.

As part of funding announced last year by the Australian Renewable Energy Agency (ARENA), a team at the University of Sydney is exploring how to improve the energy-conversion efficiencies and durability of emerging silicon-perovskite photovoltaic cell technologies. Some AU$2.5 million (US$1.9 million) was awarded to the researchers as part of a wider AU$15.14 million solar research package to support projects across Australia in areas such as advanced silicon, new materials development and sustainable end-of-life management of panels.

Elsewhere, scientists at the Massachusetts Institute of Technology have found a new approach to narrowing the search for the best candidates for long-lasting perovskite formulations. By testing less than 2% of the combinations among three components making up perovskite material, the researchers believe they have found what appears to be the “most durable” perovskite solar cell material to date.

7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

Premium
April 16, 2025
In this blog, PV Tech explores how the upcoming Australian federal election could impact the rollout of renewables and solar PV.
April 14, 2025
Acen Australia has revealed it has completed an AU$750 million debt financing for a growing 13GW renewable energy and storage portfolio.
April 11, 2025
A 10-year solar-based PPA will play an integral role in a new agreement that will see BOC Australia replace 45% of its power with renewables.
April 10, 2025
Octopus Australia has completed financial close and started construction on its 80MW Fulham solar-plus-storage project in Victoria.
April 10, 2025
British perovskite solar company Oxford PV and Chinese solar manufacturer Trinasolar have entered into a patent licensing agreement for perovskite-based PV technologies.
April 10, 2025
The State Electricity Commission (SEC), a state-owned energy company in Victoria, Australia, has confirmed that construction has started on the 119MW SEC Renewable Energy Park.

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA