Study provides new insights into dust impacts on PV performance

Facebook
Twitter
LinkedIn
Reddit
Email
The performance losses from dust soiling on PV modules are complicated to model accurately. Credit: Kiwa PI Berlin

Researchers have developed a new methodology they hope will improve the modelling of the likely impact of different types of dust on PV system performance.

Soiling from the accumulation of dust on PV modules in arid and semi-arid areas can lead to significant performance losses, but its precise impact is difficult to predict in different locations due to the costs and complexities involved in collecting and evaluating local dust samples.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

A study by scientists from Germany’s Fraunhofer Center for Silicon Photovoltaics (CSP) and King Mongkut’s University of Technology, Bangkok, has sought to close this gap by analysing the impact of dust from several different locations on PV module performance.

The research team said the project was aimed at gaining a better understanding of the impacts on soiling, with a particular focus on the uncertainties between transmission losses and the associated short-circuit current losses caused by different types of dust.

They collected dust samples from Morocco, Qatar and two sites in Thailand and conducted soiling tests in laboratory conditions.

Each dust sample was analysed for properties such as particle size distribution and chemical composition.

Laboratory tests exposed glass samples and single-cell PV mini-modules to define soiling conditions, correlating the transmittance loss, short-circuit current loss and the dust density with the surface coverage.

This enabled an accurate comparison of the relative impact of each sample on performance, based on the gradient of the correlation lines.

The researchers reported that the analysis revealed critical insights into the relationships between transmission loss, short-circuit current loss and dust density in relation to surface coverage.

In particular, they noted a consistent overestimation of soiling loss based on transmission measurements taken from glass samples compared to measurements conducted on PV mini-modules. The soiling-related transmission loss was 16.6% higher than the short-circuit current loss. The research also highlighted a 15.5% lower measured short-circuit current loss than the standard model predicted.

“These discrepancies can be attributed primarily to variations in light paths and the scattering effects of dust on the samples,” the researchers noted. “Despite these systematic differences, we identified specific characteristics of dust that influence soiling behaviour, underscoring the phenomenon’s complexity.”

The researchers said the findings offered valuable insights for refining measurement techniques and, ultimately, optimising the performance of solar energy systems in dust-prone regions.

“This research advances our understanding of how soiling affects PV modules and lays the groundwork for future studies aimed at enhancing the accuracy of existing models,” the researchers concluded. “Ultimately, our work represents a crucial step towards improving the efficiency and durability of PV modules under real-world conditions.”

The ‘Impact of different types of dust on solar glass transmittance and PV module performance’ was published in the journal Progress in Photovoltaics.

Read Next

June 6, 2025
rPlus Energies has secured more than US$500 million for an 800MW solar-plus-storage project in Emery County, Utah, US.  
June 6, 2025
Australia’s Solar Energy Industries Association (SEIA) has called on Australia’s climate change and energy minister, Chris Bowen, to “urgently intervene” on a rule change that could threaten to derail the uptake of rooftop solar PV.
June 6, 2025
ElectraNet has revealed that renewables supplied 100% of South Australia's electricity demand for 27% of 2024, roughly 99 days.
June 5, 2025
Solar manufacturer Involt Energy has broken ground on its first solar cell manufacturing plant in the western Indian state of Gujarat, with an initial annual nameplate capacity of 1.78GW. 
June 5, 2025
Indian solar module manufacturer Vikram Solar has received final approval from the Securities and Exchange Board of India (SEBI) to proceed with its initial public offering (IPO) and raise capital through the public markets.
June 4, 2025
Independent power producer (IPP) Enlight Renewable Energy is expanding its Gecama Wind Project in Castilla La Mancha, Spain, by integrating solar PV and battery energy storage systems.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
September 16, 2025
Athens, Greece