Premium

Advanced front-surface passivation schemes for industrial n-type silicon solar cells

Facebook
Twitter
LinkedIn
Reddit
Email

By Bas van de Loo, Plasma and Materials Processing Group, Eindhoven University of Technology; Gijs Dingemans, ASM; Ernst Granneman, CTO, Levitech BV; Erwin Kessels, Department of Applied Physics, Eindhoven University of Technology; Gaby Janssen, Researcher and Project Manager, ECN Solar Energy; Ingrid Romijn, Coordinator for Industrial N-type Cells and Modules, ECN Solar Energy

The n-Pasha n-type silicon solar cell currently achieves an average conversion efficiency of 20.2% using a relatively simple process flow. This bifacial cell concept developed by ECN is based on homogeneously doped p+ front and n+ back surfaces. To enhance the cell efficiency, it is important to reduce the carrier recombination within the boron-diffused p+ region and at its surface. This paper addresses a novel way to tune the boron-doping profile and presents advanced surface passivation schemes. In particular, it is demonstrated that a very thin (2nm) Al2O3 interlayer improves the passivation of the boron-doped surface; the Al2O3 films were deposited in industrial atomic layer deposition (ALD) reactors (batch or spatial). Moreover, it is shown that the boron-doping profile can be improved by etching back the boron diffusion. On the basis of the results presented, it is expect that n-Pasha solar cells with 21% efficiency will soon be within reach.

Published In

Premium
Signs earlier in the year of the global industry entering a growth phase have now been confirmed beyond any doubt. Almost all the big-name suppliers have now announced some form of manufacturing capacity expansion, a trend that analysts agree will only gather pace as long as the levels of demand predicted over the next few years turn out to be correct.

Read Next

Subscribe to Newsletter

Upcoming Events

Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas
Media Partners, Solar Media Events
May 7, 2025
Munich, Germany
Solar Media Events
May 21, 2025
London, UK
Solar Media Events
June 17, 2025
Napa, USA